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ORDER, TOPOLOGY AND PREFERENCE

Murat R. Sertel

~This is a reasonably self-contained paper bringing sbme.standard
order—rélated'and topological.notions, facts and methods to bear on a
number of central topics in the theory of preference and, as a nat-
ural but hénéeforth ummentioned correlate, the theory of optimization.
Much of the material brought to bear is.well—known to economic thgor-
ists and evéﬁ more so to mathematicians. Part of it,fhowever, falls
into that growiﬁg ciass of mathematical results motivated by.sociél
.analysis, and is, I think, new. Such fesults will.be found inter-
spersed throughoﬁt Section 3 as_e#tensions of the basi¢s of Nachbin's
[9] work. 'Among'suéh resuits, hbwéver, the two theéfems:under 3.4
and 3.5 are probﬁbly the more important to note. |

" The topic offSection 4, the theory of preference, is largely but
‘not solely the motivation for the study as a whole.'-Thus, some of
the‘facts and notibns presented before that section are not used at

all in Section 4. Sections 1—2 are preparatory. Section 3'exploits

some coﬁsequeﬁée;Tdf éonnectivify; éspecialiy from theuéiewpdinf of
normally preorderedISpaces. thusvextending the early Qofk of Eilenberg
[5] and Nachbin [9] on order and topology. |

‘ lSecfion 4 begihs'with the subsection 4.1 in which Debreﬁ's
celebrated first reﬁfesentation theorem [1, Theorem 1, p. 260] is
made obsolete by the more general corollary (4.1.1) to theorems

(3.4) and (3.5), as a result of which Debreu's assumption -of
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separabilit& for the space of prospects‘can be dropped. .[Thué,
from the viewpoint of economic theory, 3.4 and 3.5 may be looked
upon as leimas aimed at 4.1.1, which is then "elevated" to theorem
status.] |

The next:subsection, 4.2, uses this and [10] to extend the
foundations of Gorman's [6] insightful characterization of the
structure of preferences.j It is indicated how this significantly
extends that characterization as a whole by allowing two of Gorman'a
poetulates (separability and arcwise connectivity) for the space
of prospects to be relaked to a much weaker postulate (connectivity)

The content of the brief final subsection, 4.3, is described
quite well by its title.

To the reader minumally knowledgeable in topology, this study
is mathematically self-contained. In any case, Dugundjl-s
Topology [4] will be our standard reference in this domain. [N.B.:

Dugundji uses 'path' for 'arc'.]

.Standing Terminology andrNotation: The set of real numbers

wlll be'denoted by R, while Ek will denote.k—dimenSional
Euclidean space (k = 0, 1, ...). Thus, El will stand for

A R with the usual (equivalently, the order-) topology; Given .
a set X, a relation on X will méan a subset T C X x X |
of the Cartesian product of X wupon itself. A preference

. relation is.avcomoletemtranSitive relation:hand a utilitiv

* function is simply a real-valued function preserving a prefer-

ence relation. [See further terminology given in Section 1.]
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A set X on which a preference:relation is postuiated is a
space gj;p;ospgﬁts.'.The'last'three underlined tefms wili
;;1dom be used from'here on. 'We"will‘mean 'you (the reader)

and I (the author)'; 'iff' will mean 'if and only if'; 'nbd'

will mean 'neighborhood’.
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Preliminaries

Let Tc X x X =3X? be a relation on a set X. Denote

I'x

{yex| &, y) e}
(x € X).

%I

iy e x| G, x) € I}

A subset -A.C.:X is said f:o be increasing iff TA C A, and it is
said to b'e'de'creasiﬁg. 'i.f‘f ATC A. Clearly, A CX is increasing
iff its complement, denoted by Ac, is decreasing. Also, it is |
plain that any intersection and any union of increasing (decreasing)
sets is increasing (decreasing). Thus, each set_ ACX determines

a unique smallest increasing (decreasing) set, denoted by AA (AA),

" which contains ‘A. In fact, if I is transitive, then the relation .

AC X? arising from this notation by setting A =T U A (where
A = {(x, x)_| x € X} 1s the diagonal of X?) is the smallest re—
flexive relation containing T, and we_have

M =TAUA, AMM=ATJA (ACX). [Let QCcCX%. Q is said

" to be reflexive iff Q DA, transitive iff QA D MMA for all

A C X, antisymmetric iff Q0N @1 c A, and complete (or total

| or decisive) iff QU @1 = X%, where ! = {(y, x)] (%, y) € Q}

+  denotes the converse of . { 1s called a preorder on X iff

it is reflexive and tramsitive; it is called a partial order on X

iff it is a preorder on X and antisymmetric; finally, it is called
a total_ order on X 1iff it is a complete partial order on X]."
The proofs of the following two useful facts are entirely

straightforward and, hence, omitted.
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1.1 Exercise: Let I'C X? be a relation on a set X. Then T

is transitive only if "A=T U A is transitive and 1ff

! is transitive.

1.2 Exercise: Let T'C X? be a-relation on a set X, . such that

c .
I'" 1is complete and antisymmetric. Then

1.2.1 T is irreflexive (i.e., TN A = @) and so is T !; in. partic-

ular, T = (I’c)_ﬁ1 N A and T =71¢ \ A

1.2.2 The three relations 'y A and F"l -are pairwise disjoint and

exhaust X2:; x2 =T U AUT?,

1.2.3 A= @971,

The fbllowing is really a continuation of the above
exercises, but is recorded separately because a proof is

included.

1.3 Progositionﬁ Let T C X? be a relation on a set  X, such that

r¢ is complete and antisymmetric. Then
1.3.1 T is transitive iff I'® is transitive.
1;3.2_ I' is tramsitive iff A =T |y A is transitive..

Proof: (ad 1.3.1 "if"): Assume [® transitive. Then (ré-1,
too, is transitive; furthérmore, by 1.2.1, I = (r9-1 \ A.

Suppose (x, v), (y, z) € I'. To show that (x, z) € I', it
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sufficeé, then, to show‘that (x, z) i A. Suppose (x, z) € A.
Then (z, y), (v, z) €.I'; hencé, (z, v), (v, 2) € (Fc)'l.
Thus, antisymmetry of r¢ implies that;_y = gz, contradicting
that (y,.z) € (1"c)_1 \ A. We conclude that  (x, z) ¢ A,
i.e., fhét (%, z). € I and that T. is transiqive.

(ad 1.3.1 "only if"): Assume I transitive and suppose

- (x, Y),i(y, z) € TS, Then (y, x), (2, 7) € IS 1f oy =x

or z =y, then (x, z) ¢ Fc, leaving nothing'to prove. So
assume X # y # z; Then, using 1.2.1, we have (y, x), (2, ¥)
€'(Tc)—1 \.‘A= ' Transitivity of T thus yields (z, x)
eT C:(Tc)’I, so that V(x,'z) € Pc, showing re fé be
transitive,

(ad 1.3.2): As "only 1f" is'already given in 1.1 (and
étated here.merely.for-coﬁpleteneés), we prove "if" only. For
that, simpiy observe that antisymmetry combined with reflexivity
for re ‘yields T U A = (TC)’I, so that 1.3.1 ensures I' to

A 1is so.

be transitive if (I'%)~?

2. Some Basic Ordér—Tonlogical Fécts

The fagts and notions presentedmI;—EHig sectionAexfénd
: basic propositions.demonstrated or notions used by Nachbin
[ 9, pp. 26-27]. A relation ' CX? on a topological space X is

said to be semiclosed iff I'x and xI' are both closed for each

x € X; it is said to be closed iff it is closed in X?.

2.1 Proposition: Let X be a topological space and T'c X% a re-

lation on X.
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2.1.1 1If for every (x, y) € r¢ there exist disjoint nbds U and V
of x and y, respectively, such that either U us increasing N

or V is decreasing, then I is closed.

2.1.2 If T 4is a closed preorder, then for each (x, y) €T
there exists an increasing nbd U of x and a decreasing nbd

V of y such that UNV = .
2.1.3 If T 18 a‘closed preorder,.then it is semiclosed.

Proof: (ad 2.1.1): Suppose (x, y) € re, and that U, V ;ére_as
described in the hypothesis. Then ‘U X V is a nbd of x, Y).
Furthermore, if (u, v) € (U x V) n I'n then u e vl, so that,

contrary to assumption, neither can U be increasing, nor V

decreasing, since UNV = (. Tﬁus, Ux VAT ¢, whereby

r¢ is open, i.e., T is closed.

(ad 2.1.2)§> Suppose (x, y) € I'S, chobse.é nbd U' x V!
of (x, y) not meeting I, and define U = PUL:V =vVv'r, so.
that, indged, U 1is increasing énd V decreasing, while
UxVDU' xV' is anbd of (x, y). But UN V = ¢, for if
2z é U (so-that there.exists u e U' with z € Tu) and z e V
(so'th;t there exists v € V' with ‘v e Tz), fhen transitivity
6f. I' implies that U' X \'Al meeﬁs T (siﬁce how_ veTlzC FFu..

G Tu, i.e., (u, v) €T), a conti’adiction.

(ad 2.1.2): Given x € X, we show that T'x is closed;

imitation shows that xT' is also closed. If TIx = X, then

A
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it is clbsea triviélly. So assume- (Fx)C # @ 4dnd let y € (I‘x)c
Then, by 2.1.2, there exists an increasing nbd U of;x and a |
decréasing nbd V 6f_y with 0NV = @.
But I'x is the smallest inctgaéing set containing x, s0 that
'x CU and, hence, Tx\V = @. This shows that TIx is

closed, and completes the proof.

From the fact that A =

'\J A and is reflexive, the semiclosedness

(closedness) of ° A when X 1is Frechet (Hausdorff) immediately yields that

2.2 Corollary: Let X be Tlth) and T CX2. If T 1is transitive, then.
A is a preorder, and if ' is semiclosed (cldsed), then so is ‘A,

whefeby A now becomes a semiclosed (closed) preorder on X.

Furthermore, the conjUnctionvof 2.1.1 énd 2.1.2 plainly implies the
following'

2.3 -Corolla;z: .Fbr a preorder TC X2 on a topological space
X, being closed is equivalent to the.condition that, for eéch

(x, y) € Fc, X has an'ihcreaSing nbd disjoint from some decreasing
nbd of y. |

The next proposition relates our earlier observations to

separation propérties of X via antisymmetry of T C X2.

2.4 Proposition:>.Lét r c:Xz be a partial order on a top-

ological space X. Then X is T1 (i.e., a Frechet spéce)

if T -is semiclosed, and X 1is T, (i.e., a Hauédorff

space) if T 1is closed.
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gigggz Suppose x, y € X are distinct, so that either
(1) x¢Ty or (i1) y # Ix. Assume-that I is semicloséd.
.SﬁPPQQG that ~ (i) holds. Then (I'y")C is an ‘open séf to whiéh
b4 beloﬁgs and Y, by the reflexivity of T, .doés not;.
similarily, we see that (xI')C is_oéen set to which
'y belongs and x .does not. Also similérly, if (ii) holds,
then (r=)¢  1is an openksef to which y beldggsvwhile x does
not, and '(yF)c -is an open set to which x belongs:ﬁhile y

does not. This shows that X is T proving the first half

1,
of the proposition. To prove the second half, we note that, if
T is closed, then, whether (i) or (ii) holds, 2.1.2 applies, '
so that x and y have disjoint nbds,vi.e}, X is T2.' This

completes the-pfodf.

3. Consequences of Connectivity

Coﬁnectivity plays.a great role in the pioneering work of
 Eilenberg [5] ‘on ordered topological spaces, and we open this
section with, essentially, a rewording of one of his early regults,.

including proof for the sake of compieteness.

3.1 Proposition: Let X be a connected space and I‘CCX2 a
semiclosed complete antisymmetric relation. Then T 1is transitive

(see also 1.1), hence TI'® is a total order.

Proof: Suppose 2z € 'y and y € I'x holds for some, x, y, z € X.
Then fcy Cx \ {2z}, while 1.2.2 implies that X \ {z} = Pz\j zF.

which is the union of two disjoint sets Tz and zI'y each of
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' demohstratioﬁ. Let z € Z, and define U = (zl")C and V= (T'eg)".
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~ which, by semiclosedness of T¢ is open., As X 1is connected,

so is Pcy; hence, either PcyCZ Tz or PcyC: 2. As y € Pcy

by reflexivity (from completehess) of Tc, and since y e 2

by assumption, we must have Pcy C zI'. But, also by assumption,

x € y =TI ly, and 1.2.1 has I}y CT%. Hence, x € 2l, i.e.,

zle Pk, Qﬁéfeb& T is.seen to be transitive. Then 1.3.1 implies

that TI° is transitive, hence a total order, as to be shown.

PropoSition: Let T CIX? be a preofder on a connected space X.

Then T is cloSed-iff it is semiclosed;

Proof: We state "only if" merely for completeness, as it
is already given by 2.1.3.

To see "if", assume I semiclosed, and suppoée (x, y) € re,

‘Combining 2.1.2 with the fact that I = A is reflexive and thus

I'x isvthe.smallest increasing set containing x.'whiie yI' 1is
the'smailest.decreasing set -containing vy,  we see that IxNyT = ¢.
Define 2z = (Px)c'ri(yr)c. Zb cannot beiempty,ISince this would
imply X = z¢ = Px.U yT; a contradiction of X being conneétéd,
since Tx and yI' are closed by assumption and disjoint by

. - _ . .
By.definition of 2, x€eU _énd y € V, while U and V are
open. As the compiemént pf a decreésing (increasing)'set, U is‘
increéaingj(v is deérgasing). Thus, 2.1.1 applies, so that f

is closed. This completes the proof.



3.3 Corollary: Let X be connected and T C X? a semiclosed complete
ahtisymﬁetric relation. Then I 1is a closed total order an@"X_
is Hausdorff. Fur;hermore, each point of X 1is a cﬁfpoint, the
infimum or thé supremum of X, and, if X is compaét, then .

X 1is a tree. [N.B. Given X connected, x € X 1is called a
cutpoint iff X‘\{x} is not connected. Points y, z € X are
said to be éegarated by (a cutpoint) x _iff they belong to
distincﬁ components of X\ {x}. Aigzgg'is a continuum (ife., a
compact connected T, space) whose each two distinct points are

separated by some point.]

'2222£’: That T 1s a closed ;otal order follows directly from the
conjpnction of 3.1 and 3.2. Then 2.4 implies that X is‘Hausdorff.
Using 1.2.2, Xﬁi{x}‘= r‘x U xfc for each x € X, where this is

a decomposition into two disjoiﬁt sets which are open by semi-
closedness of TI. Thus, x is a cutpoint 1f ISx # @ # xT'C.

If T = g, Atheﬁ X=TIx, 1.e., x 1is an infimum and is unique
by antisymmetry of I. If xI'¢ = #, then x 'is‘seen, similarly,
to be,the'supranum of - X. _If X - is compact, then'it.is a con-
tinpum,land.if. x and y are distinét ﬁoints of X, no geﬁerality
is lost byAassuming x € Fcy,_ from wﬁich.it is stréightforward:to
show ﬁhat'connectedness of X and sémiclosedness of T implies |

the existence of a point z € X with x lying in ISz and 7y
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in zPC, showing théﬁz X is a tree and completing the proof.

Actually, the very first consequence in the last corollary
implieé that if T 41s a semiclosed total order on a connected
space X, then £ is discOnnecﬁed (since T 1is now closed
and £ is the union, 5y 1.2.2,,6f the two disjoint sets TI°
and (%)~ eééh.bf which is open by closedness of I'). This
is a rewording of a "half" of the first of three main theorems
of Eilenberg [5, Theorem I, p. 40], the other "half" of which
states, con?érsely,'that - £ is disconnected for a connected
space X. onl& if. X can be endowed a semiclosed total”ofder.

~_ For what follows, we will ﬁeed Nachbin's t9, p. 28]
generalization of the familiar notion of a normal space, ﬁamely,

thét of a normally‘preordefed space. A topological space X

equipped Witﬁ a preorder TC:<X2> is éaid to be normally p;eordered
V.(by T) iff; for-évery two disjoint closed sets 'Po’ P,C X such |
~ that P0 is decreasing and P, increasing, Po and P, have
disjoint open nbds U0 and_ U, respectivély, with Uo de~
creasipg and U, increasing. We needysome further terminology. f
Let T be a preorder én a topological space X. if ‘Y CX, then
the smallest increasing (decreasing) closed set containing .Y will
be denoted by. I(Y) (respectively, D(Y)). If Y, Z.C_X, we will
>wrrte Y<z to mean that D(Y) N I(Z) = @§; we will write

Y << Z to-meén that Y and 2Z have diéjoint open nbds U.,énd

V; respectiﬁely, sﬁch that U 1is decreasing and V increasing.

We will use the following simple éharacterization‘theorem I9, p,29];
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A topological SPace X equipped with a preorder is normally
preordered iff Y << Z whenever Y < Z (Y, Z C X).
" 3.4 Theorem: Let X be a connected space completely preordered by

a Semiéloéed relation T C X2. Then X is normally preordered

by P‘.

Proof: Let A, BCX and suppose A < B. Assume A$ Q4 3,

vfor otherwise A <«< B tr;vialiy. Sinée B(A) énd I(B) are

closed.and-disjoint nonampt& sets '(A c:D(A) and B CI(B), by
V reflexivity of T},v édnnectivity qf X cléarly implies thét |

there is a point y € X..such-that y ¢ D(A)lJ I1(B).

As fr' ;é a preorde;, the sﬁalleét increasing set cpntaihing

'y is-.Fyﬂ_and fﬁe sﬁéllést decreasing set conﬁéining‘y .

is. yI'. As T 1is semiclosed, D({y}) =yI and

I({y}) = I'y. By trahsitivity 6f T, decreasingness of D(A)
énd increasingness of I(B), y ¢ D(A) U I(B) implies that
DA NTy=¢ =y N I(B), 1;e., that A < {y} < B. Thus; r
béing semiclosed, Pcy is an opeh decreésiﬁg nbd 6fl A band
ch and open increasing nbd of B, and -Fcy n yPc =@ by
- transitivity of T. -Henqe; A <<_B,‘shOWing that X is normally

preordered by T. -

The following theorem of Nachbin [9 , Theorem 2, p. 36]
gives us Urysohn;svfaHSEs extension theorem for continuous real-
" valued functioﬁs'on a normal space when it is noted that a

normal sgéce‘is simply a space X normally preordered by the-



discrete partial order ACX?® and X is considered to be

noxmally preorderéd by " A.

Theorem: Let X be a space njrmally preordered by I, and let

PC X be a closed subset such that fP: P+ E! 15 a bounded

‘real-valued continuous function preserving I' [i.e.,

y € I'x => fP(y)_z fP(i)j. For each A € E!, denote
AQ) = Ix e P| £,0) <A} and BQ) = {x e P| £, > AL

Then £, can be extended to sdme bourided (real-valued) continuous

P

.f:preSefﬁing function £1 X - E! iff A(M) < B(Xf), whenever

)\ < )'\'.v )

Our immediate motivation'for:récording this theorem is its dée

in proving the following

Theorem: ' Let X be a space nofmally preordered by a relation

"Tcx® such that T =T N'T-1 is semiclosed. Then there exists

- a bounded cbntinuous real-valued function f: X+ E' preserving

‘the preorder T.

Proof: To avoid triviality, assume X # ¢ and choose an arbitrary

point p € X. Define P = Zp. As & is semiclosed, P 1is

" closed. Arbitrarily choose ™ € E' and define fPi_ P~+E!' as.

case of ) 6:.'(iii), -B(A')'

the constant fP = 7. Then fP is trivially bounded, continuous

and P-pfeserving; Now choose A, A' é_El such that A< A

befining A(A) and B(}A) - as in Nachbin's theorem above, the
theorem requires only for us to show‘that A()) < B(A'). Now

either (1) "< A or (1) A' <7 or (i) A<mw<A'. In

@, so that IBO')) =@¢. In

case of (i1), A(\) = @, so that D(A(A)) = #. Thus, in all
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cases ﬁ(A(X)) NIBA')) =@, showing that .A(A) < B(A'). We
conclude that thére exists a bounded, continuous, reéi—valued,

vP-preserving f: X > E' with, in fact, f£(P) = T.

3.6( Coroilagz:’ (Seev4.1.l below)

4. Applications in the Theory of Preference

This section will illustrate how the methods so far presented
may fruitfuil& be apflied in social anal&sis. The éhosen specific
arégvof appi;cation is the:theory'oflﬁrefergnce, otherwise known
to economists as "utiiity theory". ‘ | |

4.1 Representation of a Preference Relation:

A celebrated result in this theory is Debreu's [1 ,

Theorem I, p. 162] following first "representation"

Theorem: Let X be a separable connécted'space completely pre-
- ordered by a semiclosed relation [ C X%. Then there exists a

continuous real-valued function f: X -+ E!. preserving I' (in’

fact, representing P,'xi.e., obeyihg. y eTx 1iff f£(y) 2.'f(x)).

.The first contribution of our results in the previous sections
to our presént area of application consists in subsuming Debreu's

just-stated theorem as a direct corollary of the more general

4.1.1 Corollary:: Lét ‘X be a connected space completely predrdered
by a relation I'C X?. Then there exists a bounded continuous

redal-valued representétion f: X > E! of I 1ff T is semiclosed:
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Ezggg:'“By 3.4, X is nbfﬁally preordeféa“by> r if T is
semiclosed. If T 1is semicloéed, tﬁen so is X, whereby 3.5
directly yields a boqnded, continuous, T-preserving function

f: X > Ei (which, by completeness of I', is, iﬁ facf,'a,repreSen—

tation of T), as sought. The converse is obvious.

In comparing 4.1.1 with Debreu's indicated theorem, it will be found

that the hypothesis of 4.1.1 is weaker, missing the separability

of X, while its consequénce appears stronger, guarapteeingvé
bounded £ of»fhé,desired sort. Of these differences, it must
be remarked, theJlattef should not be considered importaﬁt or,
fof tha£ matter5 real, és we can always use the bounded function-
¢ . :

£/E41 . if £2>0

g =¢ |
f/f—i . if £<0

N ‘
instead of f whenever f happens not to be bounded, and g ob-

&iously has all properties desired of f. The absence of the
separability assumptipn for X in 4.1.1, however, must_be viewed -
as a strict iﬁp:ovementvwith some important "practical" con-
éequenées - from a technical viewpoint - for the'theoretician‘
concerned with matters of preference. [Itvis a standard top;
oiogical facf that a product space X = HXa (with the product
topoiogy of {Xal & € A}) 1is conmected iff each X  1is con-

nected but that the following restrict the product invariance of

separability and 2° coﬁntability: (1) X is separable iff each
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X  1is separable and all but at most 2#°

of the X 's consist of
e oo

single points, where #, is the cardinality of the set of nétural
numbers ("aieph naught') ; (25 X iis 2° countable 1iff each Xa
is 2° countable and all but #, of éhe ”Xa's' are indiscrete.
(éee_Marczehski t 8 ]‘céncerning (i).) Thus, for instance, a
topoiogic314VectOr.space obtained as the product of more than

2

copies of the real line is neither.separable, nor, indeed,
25 couﬁtable, while every convex subset is (in fact'arcwise-)
connected,~s§ thaﬁ; in thié case bebreu's second fepresentafion
theorem |  1 , Theorem 2,‘p. 163] is just as inappiicable as his
first?VWhile 4.1.i can be used. Fufthérmére, ihterpreting Herstein
and-Milndr's [ 7 1 mixture set in the natural sense of convex |
set here, thefevare connected sets in éhis vector space, notably
(from the viewpoint of generaiized Kuhn—Tucker theory) the star- |
shaped seté, whicﬂ.will not be mixture sets, so that:an instance
ié found where the representation theory of [ 7 ] - which, in-
cidentally, deals with the case where T is a total order‘—'wili
not ;pply while.4.l.l will.] |
Applicafions of 4f1'1 extend also into the»next subsection.
Another simple fact to be used there but properly belonging undef

the present heading is the following

4.1.2. Lemma: Let T CIXZ_‘be a complete transitive relation on a
connected space X, and let f: X > E! be a T-preserving
reai—valﬁed function. f 1is (a) continuous (representation of

T) 1ff T 1is semiclosed and f(X) is connected. _
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Proof: It is obvious (and stated merely for COmpleteness) that
I' is semiclosed and £(X) is connected if f is-ContinUops.
We prove.only the converse. For this it suffices to show that
the inversé image f~!(W)C X of every.sﬁbbasic open set
WCE is open if T is semiclosed and f(X) connected, and
) wé téke W= {we Ell w > w*} for some arbitrary vw* € El,
'reﬁarking that the argument will bé entirely similar for
W'.='{w £ Ell w < w*}. If w* ¢ £(X), then connectivity ofl
£(X) imélies that eithér (i) w* <w for all we £f(X) 6r
(1) w' >w for all we £(X). 1 (1), then 1) = X5
and if (i1), then f=1(W) = @; 1in either case £l is
open. Now consider w' € f(X), and let W = f(x*). .Then
£1w) % x*Fc, by the fécf‘that I' is complete énd f F-pre?
' serving. Thefefore, if P,‘is se@iclosed, then f 1(W) . is

open, and this completes the proof.

The Structure of Preference Relations and Their Representations:

Otherwise stated, the topic of the present subsection is
that of "aggregation" and, in particular, the "separébility" -
additively or in general - of utility functions. The immediate

motivation is to extend the complete characterization by Gorman

[6] of the "separability" and, in general, the structure of

utility fdnctions.
This charaéterization'was'given_by Gorman under the assump- -

tions, among others, that the space of prospects was (topolog-

~ically) separable and ngWise-conneCted. Arcwise conneétivity ‘
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ﬁas effectively shown [10] to be reléxable to connectivity for
Gorﬁah's results, being so for his underlying Lemma 1 [6,

'p. 387]. It appears that the only reason for posfulating
separability as an assumptionvwas to ensure the existence of
continuﬁus utility‘functions, invoking Debreu'sififst rep-
resentation theo;em'stated in 4.1. As 4,1.l'now outrules any
need for this theorem and for the spéce of prospects to be
separaBle, one quickly intuits that Gorman's-sepafability‘_
assumption méy_also be eliminated. Here we shpw that hié
Lemma-l caﬁ_be.extended so as to éﬁply whether or not the

space of‘prospects-is separéble (or arcwise conneéted), S0

long as it is connected, and encourage the reader to check that
this aCtually yields a corresponding extension of the whole of
Gorman's_reéults in [61; so.that his assumptions'of separability -
and arcwise connectivity can, in fact, be diminished to'éOn-

nectivity throughout.

I coﬁgider this asIOpportuné a moment as any to indulge
in the premature expression of a thought, as fuzzy as it is in
'_my_mind, thét what we, including frofessor Gorman, are looking
at is a‘topic of inﬁerest in its own fight as.having fo do
with the "structure', in general, of relations and of maps pre-
serv1ng them, deserving at least a glance by specialists in

functional -equations and semigroups - 1f, indeed, they had not
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alréady éeen through the matter. And, continuiﬁg to bleed out
this thougﬁt, Professor Gorman'é analysis of the structure of
A| (see 4.2.1) ié probably a key to more doors tﬁan.meet the
eye iﬁ this dimiy illuminated hallway.

We now turn to more concrete matters. - Throdéhoﬁt,

X =1 Xa will be the product of a family '{Xal o e A} of
A o o

spaces, and I CX? will be a relation on X. Giveh any

B C:A, we will denote Xg = EIX& and X2 = XBC. Projection
of X onto a factor XB will be denoted by Tpo and pro-
jection of X2 onto Xg will be denoted by*,ﬂﬁ. Finally,

for each B CA, we define two reiationfvalued maps vy and

Yg on XB by

F.ﬂ [XB x {xB}]2 and

2 (v,

Y(XB)

g0

_ lower case Latin denoting, as from here on, a generic element

of the respective capital [e.g., x €X, x, €X xB € XB, etc.],

B B’

and xﬁ .denoting - ﬂB(X), etc.

., 4.2.1 Definition: We say that A 1is semidivisible by B or

' that B is'aAsector of A, and we write A{B, iff 'YB
is a constant functiop (in which case its cdnstant value on
XB élearly coincides with ﬁ;(r), which latteér we denote
by PB); We say that A is divisible by B, that .B

divides A, or that B 1is a complemented sector or factor

of A, .and we write AllB, iff AIB and Ach. Finally,

we define
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{B| A|B}, |

>
u

Rl
u

. (8] AI:B}..

‘Thle“_fqllov‘r'i.ng are clear.
4.2.2 Proposition: ¢,_ Ace A"CA]

4.2.3 Proposition: Fof.any B, C CA and any x = (xB,.xB) =
(g5 x%) e x, |
. el -C‘) Svad) N 'Y(Xc)" and
& YO eyedyn vad. |
‘ In faét, .for.any subset B CZA, denoting -TTB(.X)_= Xg
(x»éX,BC_.A), _ , . |
v D) ?‘BQ Y &) :)Y(XE);, _
where D=BQB and’E=#‘€£B. | |
4.2.4 Progdsition: A| 1s closed under arbitrafy intersection,
| i.e., BCAI' => BQ B e Al.r [Thus, Al together with the.
partial order C of containment is a éomplete.lower. semilatt%.ée
], ). with mealy = [) Al' =@ and Sup(A|) = A. Thus,
Al t;dgethef with the binary operation [} : A|? > A| of
' intersection is a c‘onnn\ita"tive't.iand (Ea_n_cl:_ semigroup of idetﬁ—
botents’) (AI, n')‘ with identity eiement A and zero @.1]
Proof:. Merely. observe that the'containmen}t' Y.(xl,))-D B@Y(XB)
of the last pro'pbsi?:io_n becomeé'an .equ‘ality whenever B CAl.

In that _'ca_Se Yp is a constant function, as Yg 1is so for
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each B € B; thﬁs,.’D evAl; ¢[The parenthetical note is

~now obvious. ]

Thus, if we know that 'B_;iS<é set of sectors of A, then
we know that the interSection of the-members]of any subset

C CB 1is also a sector of AQ’:Edr A|ll we have the obvious

4.2.5 Progosition: A“ is cloéed under complementation, so that,
. if B and C are factors of A, then BNC and C.\VB;
, . L

_ as well as B, c’, BNc aﬁdb B° N c© =_(3|J 0)¢ are

’sectots of A.

We now focus our attention on the case where T 1is a pre-
‘order. In this conneétioﬁ, the foliowing two propositions
fcoliéct some elementary facts,_the'proofs,qf thch'are straight—
‘forward. .
4.2.6 Progosition:‘ If a relation ' CX? on a product X = II Xa

: AT
sa;isfies any one of the properties'tranSitivity/reflexivity/
symmetry/antisymmetry/completéne$s, then so does each

v,préjectionv_FB'=‘ﬁ§(F) :(B CfA)*A   :

4}2.7'jProngitioni iet I' CX? be a relation on ajproddct,spacé.
X=10IX, Suéh tha.f T = T xT . Theﬁ I' is transitive/
S o L B ~C : A
_reflexiVe/symmetric/antisymmétrié; fespettively, if . PB ‘and
rC. are so.- Furthermore,' P'_ié irreflexive if at least one
of the’projections -FB'génd"Tcg.is'sb.

Thus, in particular, if  P is a (complete) preofder;'thén

so is each projection FB_(BQIfA);' The relation between T
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B is stronger for sectors B of A.

;nd its projections r
In_faét, one may see that the strﬁcture of A] and of ’AH

bear a éystemétic kinship with the "structure" of T, by

the iatter of which we refer, broadly, to tﬁe sét of relatién—
ships obtaining between I and certain of its projections Ty
Both the "structure" of T and that of the collections A

-and All are related to the "structure" of fﬁncfions u: X >~ E?
preserVing T, more particularly to the forms in which suéh
.functions can be writtén in terms of certain functions

uB:.XB f R. Information gainéa about éither of these "structures"
seems to help illuminate the othefs. For this réason we now éet>

up some apparatus to deal with the "structure" of I'- preserving

functions u: X > E}!. Let u be such a function for a preorder

T C}X2,.and let x € X. We use x as a "reference point" to

define u_: X_, + R by GB(X

= 1 { -B .
8° %p = u(xB, x) (B CA). 1t is

B) _
clear that GB preserves the preorder T [l (XB'X'{;:B})2 on

Xo x {x®}. In the case where B ¢ A|l, and only in this case,

however,_varying EB in XB does not alter (the projection onto Xﬁ

of) this preorder considered as a relation on ‘XB. Thus, in
this case, and'only in this case, we abbreviate GB to up.
. Some clues invpiving the form of u and pairwise disjoint

fémilies of sectors of A are furnished by thé‘fqllowing

4.2.8 Lemma: Let ' CX XX bea complete preoxder'on a nonempty

product X =1 Xa, let u: X+ R bé a real-valued repfésén—
A ' : : o
tation of T, and let {Bhl-n € N} be a partition of AN\ C
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fof some C C A. Then the following are equivalent.
4.2.8.1 There exists a family 'Iv P Xy R] n € N} of real-valued

n

functions and a function f XC x 1I vn(XB ) >R increasiﬁg
N n. :

in_each Vn (n € N), such that u can be expressed as

q(x) =:f(x {v (x )}neN
4.2.8.2 For each n ¢ N, Bn is a sector of A.

' Proof: (ad 4.2.8.1 => 4.2.8.2): Assume 4.2.8.1, and fix
attention to an arbitrary n € N and an arbitrary ("ref-
erence point") X € X. Suppose that X € I' §; i.e.,

oL -~ . ' -B o -B
u(x) > u(y), for some X = (xz ,xn), y=(yg,xn €X

- , n - .M :
~As f is increasing in Vs We then have vn(xB ) >
. ' n
' B B
v.(y, )» Suppose x = (x, ,x N, vy =(y, ,x n) € X.
n Bn , _Bn Bn :

Clearly, the proof rests on being able to show that

u(x) z_u(f).b Now (xC, {V (x )} ) can differ from

HEN _

) only in so far as vn(xB ) differs
n .

s are pairwise disjoint.

Go> 7 g My

'

from v (an), since the Bu

But -Vn(xB ) Z_vh(yB ) has already been established. As
n n o ) :

f 1is increasing in Vs this implies that wu(x) > u(y),

i.e., that x € I'y. Thus, Yg " is identically PB s
: n ' ©n
whereby A'Bn. As n € N was arbitrary, we have shown

4.2.8.1 => 4.2.8.2,

(ad 4.2.8.2 => 4.2.8.1): Assume 4.2.8.2, denote

and define w: X -+ X.x v(x*) by

vi(x ) = {u (x )}neN’ . c



w(x) = (kg v,

;be~(%)

All we need to show is that the dlagram

| commufesvfor'some
show that u is c
of each. w é w(X),
défines f as the
- set equal to, say,
‘u on v () for
".-seqpeﬁcenof having
in géneral, i.e.,

induction.

'.> W(X)‘

u(X)b

fUnctién .f, and for that it suffices to
onstant on the inverse image w lw)
since sénding f;vQ:y+ ﬁ(w‘l(w)) fhen
desired function. [If N were a finite
M =.{0,‘;..;'m}, thgn the é&nstancy of
gach w e wX) would be clear as a con-
A];Bn for each n é N.] To show this'

for arbitrafy.‘N, we use transfinite:

Thus, éonsider some well—brdefing of N, and denote

initial segments o

ﬂ € N, define

f elements n € N by N(n).' For each

* ’ . x . *
B = U B, and C =ANB,

and the functions

Wu(*),=

¥, (&)

' %k
h C =¢,\B
w;e;e = Cu\By

Yh gnd .yu- on X by

x.* , {u (x )} ) and
e, B, neN ()
(#Cu,.uBu(xB#), {u (x )}ﬂ€N(H))’

. Now we suppose that - u 1is constant on

s
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w1 (*) for each w* of the form w* = (x

u C*?
. ' H

{u (x )}UEN(U)) and show that, given an arbitrary |

| . 1 : | . A eN
w (ch, pu’ {pn}nsN(u)), where . p)\ € uB1 (XB)\) ( )’
u 1is constant on w=(w'). TFor given such an w', there

_ ! v

exists an w” whose projection into XC : coincides with

that of ' and whose projection into up (XB ), coincides

, for each A & N(u), with that of w'; furthermore,'we“

*' 30 that its projection into XB is a~

' ]
point Xp such that ug (x ) = pu. ‘By hypothesis,
‘ H U u
uw ;109 )) 1is some (constant) u°® € R, and, by the way in

may select

which w* was selected there is a point x've wﬁl(w')
euch thet.’u(x') = u®. -But, by the fact that A]B , u then
takes the (constant) value u on each point X € yul(w').
~ By applicétion of the principle of transfinite induction,
for each w e w(X), u 1is constant on w;}(bj, and‘thie:'

completes the proof.

‘To economize on proofs which are either obvious or both
straightforward and tedious, some further facte<are.given‘in-

the form of an

4.2.9 Exercise: If u in 4;2,8 can be expressed in the fofm

indicated in 4.2.8.1, then

4.2.9.1 for each 7 € N, v is increasinguin ug ,. so that it
| | ~n o
represents [Ip ; '
- n

where -

4.2.9.2 f 1is "strictly increasing" in p = {p }neN’
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pn € vn(xB') for each n ¢ N, in the sense that (a) |if
n - . . '
> p! ' '
> pn £ vn(XB ) for each n e N, then f(xc, p) >

f(xc, p') for each X € XC, and (b) if the hypothesis of

(a) holds with, furthermore, Py > pi for some XA e N,

€ X3

then f(xC, p) > f(xc, p') for each X o’

4.2.9.3 u can be expressed as

w6 = gy, luy <x Dl

for some g,

So far in this eubsection, the discussion invoked no
topology. The next lemma, also proved in [10], is concerned
with the contlnulty of the macroscope" functions f (and g)
as in 4 2.8.1 (4.2.9.3). For.the purposes of that lemma and
some 1ater developments, ie is useful to agree on some notation.
Accordingiy; from now on M will denote the set {o, 1, ...,-m}
of the first m+ 1 non—negatlve integers, and, for each i € M
Ml will denote M \{i}. Given a family {Xil ieM} of
sets indexed by »M, we will denote X = ﬁ Xi’ X ‘ g Xﬁ for
ﬁroducts,.and 'xl € X1’ xi £ Xi, X € X for generic elements,
‘while for projections we will adhere te X % (xi, X ).

4.2.10 " Lemma: Let X=1 Xi be.a connected space'complefely‘p;e—.
ordered By a eemiflosed relation T X ><.X, such that
{fi}lvi ElMo} C:Ml. Let u: X > ﬁl _pfeserve F; and,

)

for each i €M, let v, : X, > E' preserve I',, denoting
. i i i

the identity map of Xo by ~Vo' Define v: X *,Xo x g™
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by v(x) = {Vicxi)}ieMﬁ and let f be a function for which

the diagram

X = — > v (X)

Tu(X)
commutes. If u(X) is connected, then u 'and f are-

continuous.

_ ggggg} Assume u(X) connected. Theﬁ Q is continuous by
4.1.2. Using the apparatus of the proof of 4.1.2, to show
that f is continuous it suffices to show thaf £ w)

is bpen for each subbasic open W C:El; We fake

W= {we E w > w'} for some w" e E? and show that
f"l.(W) bis open, remarking that the argument is 'similar for
W' 5'{W'€ Ell w< W*}. If w* ¢ u, then cénnectivity of
u(X) dimplies that either (ij w* > u(x) for_all' x € X
or- (ii) w* < u(x) for all x ¢ X. if (i) holds, then
u (W) = X, so that commutativity of the diagram yields

W)

v(u~! W)) = v(X), whereby f£f~!(W) is open. In.

case of (ii), u~'@W) =¢ = v(u~t(W)) 'ffl(W), so that

£f-1(W) 1is again-ppen; So, assume w* e u(X)- and, séy,
*_ - ' , .

w* = u(x ). As u preserves T and T is complete, we

have u™} (W) =AX*FC, which is open by semiclosedness of T

(or by continuity of u) and is connected by éonnectivity of
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X. Hence, for each i € M, the projection
o -1 L
Pi ﬂxi(u »CW)) CXi is open and connected. Now VO(PO)
is opén trivially. : On the_ofher hand, for i € MO, as
v, DPreserves rif we have v, (P) = {we vi(Xi)l w >
vi(xI)}, which is open. Thus, viu (W) = I Vi(Pi) _ié'

M

- open, so that the commutation f~! = v o u-! yields

£ W) open, from which we conclude f to be continuous.

This completes the proof.

4.2.11 Corollary: Let u: X > E! be a coﬁtinubus‘representation

of a compléte semiclosed relation 'CX X X on a cbnnected

.Mj_

product space X = Il X,. Then the féllowing are equivaleht.'
4.2.11.1 for each 1 &M%, {1} e M|;

4.2.11.2 for some.family'7{vi: X, > E'| 1 € M°} and some con-
. tinupds f:'x x 11 'v x,) » E1 increasing in each
. o M° ivi :
\ (i € M°), u can be expréssed as

u(x)'= £, 'v.1<x1>_, v (x)).

Furthermore, in this case, f is "strictly increasing"

(see 4.279.2) in p = {pi} »where Py € vi(xi)

1eM>?
_for each 1 ¢ Mo, and, for each 1 ¢ Mo, v, is a

representation of Pi.

Proof: The stated equivalence directly follows from the
conjuﬁétid? of 4.2.8 and 4.2.10. The rest direct1y>follows

. from 4;2-9.1'__2.

This last éorollary extends the fundamental Lemma 1 on which
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Gorman erects his formidably complete characterization of "The
Structure of Utility Functions" [6] in the case where X is
arcwise connected and separable. [It also extends the result
which Debreu sét out éo prove in [2, lines 5-18, p. 22].] Our
extenéion here>con§ist§ of relaxing the assumptions:on X to
connectivity alone, It was shown earlier [lOJ thét arcwise
connecfivity could be relaxed to connectivity and promised
there that the.separability.assumption; too, could be deleted,
as,its'fple consisted of allowing application of Debreu's first
represeqfation theorem, -stated abovevaé a corollary to 4.1.1.
Givén 4.1.1, we now have no‘heéd for the separabiiity assumption
on X, and the earlier promise is met.

‘The main quéstion, however, is whether the assumptions‘of
arc&ise connectivity and separability, made fhroughout by
Gorman [6] can be'relaxed‘fhfoﬁghéut [6]~tb cbnnéctivity alone.
Upon studying the‘mentioned paﬁef, I find‘it.safe to state that
my conjecture is Yes. If.the proofs  of Gorman had to be mod-
ified extensively to support this conjecture, then heré would
be a good plaée to do that. For;unatel&, this does'ﬁot appeér
to be the case, so that the (well—éinsed) reader who also
. reads Gbrman's paper will find, I think, that Gorman's
charactefiéatioh applies so long as X is connected. [In féct,
if Gorman's Lemma 1 is replaced by 4.2.11, the only necessary
modificatioﬁ I can find in his probfs 1s.in'that of his basic
“theorem (Thebrem 1), where farc connected' in the first line

of 2.18 (p. 372) should be replaced by 'connected', in which
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case the theorem, and hence the paper as a whole, will be seen.
to be preserved.] Thus, the best service to be offered here to

the reader seems to be to recommend Gorman's mentioned paper.

Hence, we let this last sentence be a pointer toward the cited
study by Gorman which has been the source of motivation for this

subsection and the validity of which has now been extended.

4.3 Socialqutimum and Consenéus *.é'éiméie'Existence Result:
| The result (4.3.2) we aim to demonstrate here is, iﬁdeéd,
very simple. We are given a family A{rd<: le‘a e A} of
transitivé relations Pa’ véach on the same set X. For each
subset B C A, FB now denotes. the intersection . F ﬂ r o’
and we simplify F{ } Pd and F to T. With respect.
to I', the set of maximal p01nts (suprem points) in X ~i$.

:denoted by Max X (Sup X), where the standard'definltlons

Max X = {x ¢ XI (x, y) el => (y, x) € T},

sup X = {x € X| X x {x} < T}

apply. Obviously,

4.3.1 Proposition:.” Max XD Suﬁ_X.

The economistvwill recognize that Max X is the set of

.Paretd—optimal points. Sup X, on the other hand, is a rather
more interesting set, consisting of all those points which are
"superior" to every point in X unanimously from the viewpoint

of each 'Pd (0. € A). Of course, Sup X may very well be



, -33~
empty, even if Max X is not. In 4.3.2 we show conditions
under which both are non-empty.

Toward that, we agree to say that a relation Pa on

_a ‘topological space X 1is upper semiclosed iff Tax
iS'lesed for each x € X. By the condition of Consensus
1E_the_Smail (CS), we mean

Cs: For each pair (B, Y) of nonempty finite
Sﬁbse"tsv BCA and YCX,

N i“By # 0.
yey A

Finally, wé are able to state and prove the intended

4.3.2‘-Progosition: If X is compact and each (transitive relation)
Fd cX? 1is upper semiclosed (a € A) while the condition

CS is satisfied, then Sup X # @.

Proof: As each Pd is transitive, so is T.. Hence,
Sup X = f\Fdx. Clearly, CS implies the finite intersection
XxA : .
property that ﬂFa x # @ for each finite F CX x A, If
P
Pa x. 1is closed for each (x, 0) € X x A, then CS combined
with compactness of X iﬁpliés that f\fa x # g, as to be
. i XXA ) . . .
- shown.

We may refer to Sup X # § as the condition of Consensus N
in the Large (CL). In that caée, 4.3.2 reads to yield a suf--
ficient condition, namely that X is compact and éach Fa

upper semiclosed (o € A), under which €S => CL, i.e.,
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cs <=> CL, as CL => CS is alwéys true. In praétice, X is
often éompact while éhe Fd's are accustomed to be assumed _
semiclosed complete preorders, hence certainly upper semiclosed
transitive relations. Perhaps this yiélds a practical relevancy
to 4.3.2. I do not know whether it is worthwhile obtaining ..
corresponding results by.considering the_caSe with a measure

space of agents, following Debreu‘[3] and others.
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"Order, Topology and Preference" Errata

Page 9, line 12 should read:

"jecreasing, since vNV=¢. Thus, (U X'V)r\ I = ¢, whereby

‘Page 11, 3.1 should read:

Lemma: Let X be a connected space and PC(: X2 a semiclosed complete

; . c .
antisymmetric relation. Then [ is transitive, hence - T is a total order.
Page 12, 3.2 should read:

3.2 Theorem: A complete antisymmetric relation.on a connected space

is a closed total order iff it is semiciosed. .
. O

Proof: "Only if" follows‘directly from 2.1.3. To prove "if'", let

‘X be a conneﬁted space an&- rC x2 é semiclosed, complefe, trans-—
itive relation on X. By 3.1, T is a total order. We now show that
r¢ is open. This is trivially so if r¢ = ¢, so suppose

(y, %) € Fc, i.e., X € Fcy and‘ y € xT®. As T 1is semiclosed,
XFQ\J Fcy is a union of two nonempty open sets. Furthermore, given an ..
arbifrary. z € X, if, z ¢ xI'S, then z € xT aﬁd, by transitivity of
Ty, z ¢ Fcy. ‘Thus, xC xr¢V Fcy. X being connected, there mugt,
thereﬁore? be some z € xI'CM Fcy. Now (zFC) X (Fcz) is a nbd of-

(y, x). To see that this nbd is contained in Pc; let- a € 2I¢ ‘and
b e rz. By-eompleteness of T, we then have a € Tz and b e 2T
(i.e., zeTb), so that transitivity of T implies a e I'b. Thus,

b € Ta would imply, by antisymmetry of T, ‘that b = a, contradicting
the obviéus fact that zPCI\ €2 = ¢. Hence, b € Fca, i.e., (a, b)

.t re. Thus, ‘(ch) x (FCZ)C:'TC, showing that T® s open, i.e., that

T is closed.



Page 13, lines 11 and 12 should read:
Proof: That I is a closed total order follows directly

from 3.2. Then 2.4 implies that X is Hausdorff.

Page 15, line 9 .should read:

reflexivity of T), connectivity of X implies that

Page 15, lines 18 and 19 should read:
ch an open increasing nbd of B, and Fcy r\ch = ¢ by

completeness of T, Hence, A << B, showing that X is normally

Page 18, line 14: _ . - /

there should be a minus sign (-) before f£/f-1 if £<0



